VTT

WP3 Synthesis Final seminar

fuel

Pekka Simell, Christian Frilund, Niko Heikkinen 17.1.2024

25/01/2024 VTT – beyond the obvious

Objectives WP3

T3.1 RWGS/CPOX

- A) CPOX/rWGS technology long term piloting, TRL5, Christian Frilund
 - ensure correct reactor design and dimensioning of the equipment for large scale process design
 - determine feasible circulation ratio of the off-gases to ensure operation conditions that allow long term coking free runs
- B) e-reactor concept development for rWGS, TRL3, Pekka Simell
 - PoC at lab scale

T3.2 Fischer-Tropsch synthesis (FT), Niko Heikkinen

- find out the role of water concentration on catalyst activity and selectivity
- to make sure that adequate catalyst stability can be achieved

T3.1 MOBSU CPOx/rWGS Process

- Converts CO₂+H₂ gas feeds to syngas (H₂,CO,CO₂,CH₄, H₂O)
 - $rWGS: CO_2 + H_2 + Heat \rightarrow CO + H_2O$
 - Methanation: $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O + Heat$
 - Catalytic partial oxidation (CPOx) or reforming of hydrocarbons
 - Combustion e.g. $2H_2 + O_2 \rightarrow Heat + 2H_2O$
- CPOx mode allows for improved recycling of FT gas streams and provides insitu heat generation
- High-throughput catalytic reactor
 - In-house developed concept and reactor design with catalyst
 - Patent granted WO2019/175476 A1

EFUEL results for CPOx/rWGS

- The CPOx/rWGS process (version 2.0) was integrated in benchscale inside the MOBSU container at TRL 4/5
- The main unknowns of the CPOx/rWGS process studied for further development:
 - Validation of the reactor design & dimensioning
 - The effect of FT recycle gases on solid carbon formation
 - Longer-term performance (stability) of the catalyst
- Improved bench-scale (MOBSU) system:
 - Operation with high FT-off gas recycle
 - Unmanned operation of CPOx/rWGS in preparation for EFUEL demo (WP4)

Extended duration CPOx/rWGS testing With recycle

- 4 test weeks at (semi)fixed conditions (300 h)
 - 38 ndm³/min fresh CO₂ feed rate at H₂/CO₂ ratio of 2.3. Recycle ratio ca. 0.2. Slight variations in recycle gas composition depending on FT performance.
 - Ca. 800 C and 19 bar reaction conditions
 - No solid carbon removal (oxidation) performed
- Higher CO production rate at lower fresh gas feed rate than in tests without recycle
 - Higher carbon-efficiency achieved
- Slight deactivation detected (replicates)
 - Regeneration afterwards restores activity

Replicate setpoint (40 ndm³/min CO₂ at H_2/CO_2 ratio 2.2, without recycle): (Combined TOS ~320 h including 5 startups/shutdowns)

	Before	After
Process conditions		
CPOx/rWGS Tavg (C)	809	809
P (bar)	19.9	19.4
Results (gas GC)		
Specific CO activity (mmol CO /cm ³ _{cat} *h)	320	303
Carbon balance (IN/OUT)	1.00	0.985
Carbon balance (IN/OUT)	320 1.00	303 0.985

T.3.1 e-rwgs reactor

Porous Kanthal tube that is heated resistively

- Ni-catalyst coating
- Gases flow through porous layer
 = radial flow type reactor
- Porous tube inserted in a quartz tube to N2-flush gases out of reactor
- Total gas flow ca. 27 l/min
 - 9 l/min CO2, 18 l/min H2
 - Flush 5 l/min N2
- Temperature range 800-850C, atmospheric pressure

Bench scale e-reactor testing

- First reaction tests carried out in MOBSU
 - 32 l/min flow rate, temperature at approximately 800-850 °C
- CO2 conversion 61%, equilibrium 65% at this temperature
- **No carbon deposition** on the porous reactor!
- However, the reactor is fragile and cannot handle the thermal expansion => new design
- Temperature control and measurement challenging
 - Indirect temperature measurement by gas composition (measured vs equilibrium)
- Work continued in a follow-up project

T.3.2 Overcoating deposition and reformation into a porous structure

30 deposition cycles, no thermal treatment

Sarnello et al., ACS Catal. 2021, 11, 2605–2619 https://dx.doi.org/10.1021/acscatal.0c05099

25/01/2024 VTT – beyond the obvious

Catalyst reaction performance

ICP-MS analysis results from produced water samples

25/01/2024 VTT – beyond the obvious

Fischer-Tropsch reaction overall activity as carbon monoxide conversion versus time-onstream. Catalyst A non-overcoated sample and three samples with 10, 20, and 30 cycle ALD overcoating. Reaction steps A (initial activity), B (conversion adjusted to ~9%), C (added water conditions, simulated conversion level ~70%) and D (back to step B conditions, no added water to reactor inlet).

T3.2 Conclusions

- Catalyst active sites are covered due to ALD overcoating
 - Thermal treatment is required to induce porosity into the overcoating
- The total amount of active sites decrease due to overcoating application
 - Some active sites are permanently covered
 - However, **re-opened active sites are protected against deactivation** "anchored to the support"
- ALD overcoating (TMA/H₂O) process seems to prefer low coordination site for initial deposition cycles
 - Fischer-Tropsch activity and hydrocarbon chain growth is mainly dependent on defect sites, kinks and corners with low coordination number
- Diffusion-reaction model can be used to estimate penetration depth and to design ALD process on porous catalyst structures

beyond the obvious